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ABSTRACT

The motion of a two-dimensional bubble rising at a constant velocity in
an unbounded fluid is solved by series truncation. It is assumed there is a
wake of stagnant liquid extending to infinity below the bubble. Both the
effects of gravity g and surface tension T are taken into account. It is
shown that the problem is characterized by a continuum of solutions for T =0
and by a discrete set of solutions when T > 0. 1In addition a unique solution
is obtained in the limit as the surface tension approaches zero. The
corresponding profile of the bubble is found to be in good agreement with

experimental data. - ;,tg:;Q
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SIGNIFICANCE AND EXPLANATION

Recent numerical computations on nonlinear free surface flow problems
(Vanden—Broeck3'4'5) have uncovered an unexpected effect of surface tension.
It has been found that some problems are characterized by a continuum of
solutions when surface tension is neglected and by a discrete set of solutions
when gurface tension is taken into account.

In the present paper ue)describe'anothog example of such flows. We
congider the motion of a two;dimensional bubble rising at a constant velocity
in an unbounded fluid. It is assumed there is a wake of stagnant liquid
extending to infinity below the bubble. Both the effects of gravity and
surface tension are taken into account. It is found that this problem is also
characterized by a continuum of solutions when surface tension is neglected
and by a discrete set of solutions when surface tension is taken into
account. Moreover it is shown that a unique solution is obtained in the limit
as the surface tension tends to zero. The corresponding profile of the bubble

is found to be in good agreement with experimental data.

y

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A FREE STREAMLINE MODEL FOR A RISING BUBBLE

Jean-Marc Vanden-Broeck

1. Introduction

We consider a bubble rising at a constant velocity U in an unbounded
inviscid fluid. We take a frame of reference moving with the bubble and we
assume there is a wake of stagnant liquid extending to infinity below the bubble
(see Fig. 1).

As we shall see the problem is characterized by the Froude number

F = u/(gp)1/2 (1)
and the Weber number
2
- pU D
a - (2)

Here g 1is the acceleration of gravity, T the surface tension, p the
density of the liquid and D the width of the bubble (i.e. the distance between
the separation points S and S°').

In this paper we present numerical evidence that for a = (i.e. T = 0)
there is a solution for each value of 0 < F < F, where Fo~ 0.9. However,
for each value of a ¥ ® there exists only a countably infinite number of
solutions. Each of these solutions corresponds to a different value of F. As
a tends to infinity, all these solutions approach a unique limiting solution
characterized by F = F' ~ 0.51. The corresponding profile of the bubble is
found to be in good agreement with Collins'! experimental data.

The present results are similar to those obtained by McLean and Saffman2

and Vanden-Broeck> for the viscous flow in a Hele-Shaw cell and by Vanden-

Broeckd’s'6 for the flow past a bubble in a tube. All three problems are

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
National Science Foundation under Grant No. MCS-8001960.
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Figure 1: Sketch of the flow and of the coordinates. The
solid line corresponds to the bubble profile and

the broken lines to the wake profile.
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characterized by a continuum of solutions for T = 0 and a discrete set of "f}(
)
e xS
solutions for T > 0. RS
‘-".h‘.’.
AR
The problem is formulated in Section 2. The numerical procedure is :%'Yf
presented in Section 3 and the results are discussed in Section 4 and 5. e
f._—)‘.;:\_,
RN
AT
2. Formulation r;?tﬁ‘

Let us consider the steady two-dimensional potential flow of an inviscid
incompressible fluid past a bubble (see Fig. 1). The constant pressure in the
bubble is denoted by Py. We introduce Cartesian coordinates with the origin at
the top of the bubble and we assume that the bubble is symmetric about the x-
axis. Gravity acts in the positive x-direction.

We approximate the wake behind the bubble by a free streamline model.

Therefore the velocity is equal to U on the surfaces SJ and S'J' of the

wake. Inside the wake the fluid is at rest and the pressure is hydrostatic.
We define dimensionless variables by taking U as the unit velocity and D
as the unit length. We introduce the potential function ¢b and the stream

function %b. The constant b 1is chosen such that ¢ = 1 at the separation

points S and S'. Without loss of generality we choose ¢ =0 at x =y =20
and ¥ = 0 on the surface of the bubble and of the wake.
We denote the complex velocity by u -~ iv and we define the function

T - 40 by the relation

u -~ iv = er-ie . (3)

We shall seek T -~ 10 as an analytic function of f = ¢ + i) in the half plane
¥ € 0. The complex potential plane is sketched in Figure 2. At infinity we Sé;?ﬁ
require the velocity to be unity in the x-direction so that T - i® vanisghes at
infinity in view of (3).

On the surface of the bubble the Bernoulli equation and the pressure jump

due to surface tension yield
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%qz-gx+§-l(-8+-;b- on SAS' , (4)
P P
-;-'-—:-’-fx on SES' . (5)

Here q is the flow speed, K the curvature of the bubble surface counted
positive when the bubble is on the concave side of the surface, B the
Bernoulli constant and P, the hydrostatic pressure in the wake. In
dimensionlegss variables (4) becomes

ez——z-x--"ferii’_-ig-,w-o,o<o<1. (6)

2 * % u
Here F and & are the Froude and Weber number defined by (1) and (2)
respectively.
On the surface SJ and S'J' of the wake, the velocity is equal to U.
In dimensionless variables this yields
T =0, v =0, ¢ > 1. (7)
It is convenient to eliminate vy, Py, and B from (6) by differentiating

(6) with respect to ¢ . Using the relation

Ax , 43y, 1 _ THS (8)
3 ¢ u-\iv
we obtain
2t 9T 1 = 179 T 99
e —~—~4+—e co8b == (e —) =0 =0, 0<¢ <1 . (9)
2 p2 a 39 2 o ¥

At the top of the bubble, the velocity is equal to zero and the profile of
the free surface is tangent to the x-axis. This yields the conditions
T == at ¢ =y =20 (10)
8 =0 at ¢ =¢ =20 . (1)
Finally the symmetry of the problem implies
8 =0, Yy =20, 9 <0 . (12)
This completes the formulation of the problem of determining the function

T - 19 and the constant b. For ech valueof & and F, T - i® mst be

—-5-
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analytic in the half-plane ¢ € 0 and satisfy the boundary conditions (7),

(9)-(12). This system of equations is solved in the next section. Once the
function T - i6 is known, the shape of the upper suface SAS' of the bubble
is obtained by integrating numerically (8) on ¥ =0 from ¢ =0 to ¢ = 1.
The Bernoulli equation and the continuity of the pressure across the

surface SJ and S'J' of the wake yield an expression for Py, inside the wake:

P 2

-—:—=B+gx-u—2. (13)
Upon substituting (13) into (5) we obtain a simple second order differential
equation for the shape of the lower surface SES' of the bubble. Two boundary
conditions for this equation are obtained by imposing the continuity of the

bubble profile at S and S'. In the particular case & =« (i.e. T = 0)

the lower surface of the bubble is simply a straight line from S to S°'.

3. Numerical Procedure

We define the new variable t by the transformation
f1/2=(t--:-);—i-- (14)
This ctransformation maps the flow domain onto the inside of the unit circle.
The problem in the complex t-plane is illustrated in Fig. 3.

We use the procedure derived by Vanden-Broeck? to investigate the effect of
surface tension on the shape of fingers in a Hele-Shaw cell (see alsoc Vanden-
Bruecks). Thus we define a modified problem by replacing (11) by

6=y, ¢=¢=0. {(15)
Here Y 1is to be found as part of the solution.
We will solve the modified problem defined by (7), (9), (10), (12) and (15)

for all values of F and a. Then we will obtain the solutions of the original

prublem by selecting amung the solutions of the modified problem those for which

Y=Oo
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g Following Brodetsky7 we introduce the function Q(t) by the relation e N
\° T = ie & - l loq 1+ ¢ -Q (t) . ( 16 ) .:::‘-‘
N’ " 1-t TN
\. -
i The conditions (7) and (12) show that Q(t) can be expressed as a Taylor NN
0 expansion in odd powers of t. Hence g:;
& #
R - ;Z-f;l;:
bV + - ”
Y T - 40 = - 1YT log :—_—-:f -1 oAt (n ety
i' n=1 'If
The function (17) satisfies the conditions (7), (10), (12) and (15). The }fl_

coefficients A, and b have to be determined to satisfy the condition (9) on

the surface SAS' of the bubble. We use the notation t = rei’ oo that points
on SAS' are given by r = 1, - %-< o < % « Using (3) and (14) we have

X < (o ~ i

g!i%l = h gin2ce { )cos 8(o) , (18)

y (0 T (0 ~
dyo) b sin20e T )sin 8(o) (19) oL
do !.E

where ;(0), ;(0), T(0) and 8(0) denote the values of X, y, T and & on : }iix
the free surface SA. :}é}:
n“ . -
'.-‘,~-
We solve the problem approximately by truncating the infinite series in WS
ps
(17) after W - 1 terms. We find N - 1 coefficients A, and the constant ﬁiii

b and Y by collocation. Thus we introduce the N mesh points

Li
ols'ﬁ'l’ I = 1,000,“ . (20)

in terms of

.
o
3
Qs
—
&%
o
!‘

Using (17)-(19) and (20) we evaluate ?(GI), 5(01)

the coefficients A, and the constants b and Y. Substituz:zé these flji
expressions into (9) we obtain N algebraic equations for the N + 1 unknowns ;;és
W) b and Y.
The last equation is obtained by specifying
-0 =--2. (21) ‘

We solve this gystem by Newton method for given values of F and a. Once this
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system is solved, we obtain the profile of the bubble by following the procedure

described at the end of Section 2.

4. Solutions Without Surface Tension

We used the scheme presented in Section 3 to compute solutions with a = =

{i.e. T = 0). The numerical results were found to be similar to those obtained

by Vanden-Broeck4'6 for the flow past a two-dimensional bubble in a tube. 1In

particular we found

n
Y=3 F<F ~0.9, (22)
w
Y=3 F=F,~0.9, (23)
Y=0 F>F,~0.9. (24)

As F + ®» the free surfaces collapse to the vertical line y = 0 and the
flow reduces to a uniform stream. As F + 0, the free surfaces approach the
horizontal line x = 0 and the problem reduces to the classical Kirchhoff model
for cavitating flow past a flat plate.

Relations (22)-(24) show that all the solutions corresponding to F < F,
are solutions of the original problem. The solutions for F 2 F, are only
solutions of the modified problem. They are characterized by a discontinuity in
slope at the apex of the bubble.

In Fig. 4 we present values of the dimensionless velocity qA/U at the
apex A of the bubble vs F. The velocity dp is equal to zero for F < Fc
and is different from zero for F > F..

Collins! performed experiments for two dimensional bubbles rising in a
fluid. He observed that the profile of the bubbles were close to circular

8

arcs. Using a method due to Davies and Taylor , he derived analytically an

approximate relation between the velocity U at which the bubble rises and the

radius R of the circular arc, namely

SR
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u = 0.5(g )V/2 , (25)
In dimensionless variables (25) becomes
R = 4F2 ., (26)

Collins found that (25) was in good agreement with his experimental data. In

addition he measured the angle subtended at the center of the arc of circle and :}:ﬁ
found the approximate value 105°. Therefore the width D of the bubble is
related to the radius R by the simple formula

D = 2 sin 52.5°* R = 1,6R . (27)

In dimensionless variables, relations (25) and (27) imply the existence of k7i£
a unique flow characterized by
F=F,~ 0.4 . (28)
Our numerical results without surface tension do not agree with Collins'
experimental data: we found a solution for all values of F < F, whereas
Collins found a unique solution for F = Fee In the next section we show that
this discrepancy between theory and experiments is removed by taking into

account the effect of surface tension.

5. Solutions with Surface Tension

We used the numerical scheme of Section 3 to compute solutions of the
modified problem for various values of F and a. :Q;}
In Fig. 5 we present values of Y vs F for & = 40. As F tends to F;i:
infinity, Y approaches zero. As F approaches zero, Y oscillates often
around "-2-. Fig. 5 suggests that there exists a countably infinite number of

"
values of F for which Y = 2° The solutions corresponding to these values

of F are solutions of the original problem. As a increases, the amplitudes _;
N
and the wavelengths of the oscillations in Fig. 5 decrease. These results are ﬁ?ﬂj
ol
L,
similar to those obtained in Ref. 3 for the flow in a Hele Shaw cell and in Ref. }fﬁ
, &
4 for the flow past a bubble in a tube. By analogy with those previous works we Tee
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expect that the discrete set of solutions for which y = %- will reduce to a

1

unique solution as &~ '+ 0. We shall denote by F' the corresponding value of

the Froude number.

In Ref. 4, the value of F was obtained by following solutions with

=1, _ (see Fig. 5 in Ref. 4). A similar method was used in

Ref. 3.
In the present paper, we shall use a different approach to determine the

value of F'. We first recall that there exists a branch of solutions

1

characterized by 0 < F < F,, Y =7/2 and a”' = 0 (see Section 4). On the

other hand we expect to obtain a unique solution characterized by F = a and

Y =w /2 as a~'+ 0. EKeller’ pointed out that these two facts imply that

1

F = F  is a bifurcation point on the branch of 0 < F < F_, Y =7/2, a” ' = 0,

We can therefore find the value of F* by seeking numerically bifurcation
points on the branch of solutions 0 < F < F_, Y =7/2, =1 = 0. For this
purpose we use a variant of the scheme of Section 3 in which the problem is

reduced to a system of N + 1 algebraic equations for the N + 1 unknowns b,

°-1An' n=1%..,.,4-1 to be solved for y = %- and a given value of F. We
usad this scheme to compute the branch of solutions 0 < F < Fc, Yy =%/2,
a1 = 0. The numerical results were found to agree with those of Section 4. 1In

T~ 0 for N large (for example [a~'| < 10”3 for N = 40

particular a”
and Ja~Y < 1074 for w = 60).

For each value of F, we computed the value of the determinant of the
Jacobian matrix. We found that it vanishes for F ~ 0.51. Therefore F~ 0.51
is a bifurcation point on the branch of solutions 0 < F < Fo (Keller‘o) and
F ~ 0.51.

The profile of the bubble corresponding to F = F* and a =» is shown in

Fig. 6. The broken line corresponds to a circular arc of radius R = 4(F')2.

-13~
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Fig. 6 shows that our theoretical profile is in very good agreement with the
experimental result (26). However, the theoretical value P~ 0.51 1is larger
than the experimental value Fe ~ 0.4. This is presumably due to our simplified

model of the wake and to the difficulty of realizing truly two dimensional flows

experimentally.

LA
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